Number variance for SL(2,Z)\H

نویسندگان

  • Xiaoqing Li
  • Peter Sarnak
چکیده

We examine the variance of the number of eigenvalues of the Laplacian for the modular surface in a short interval. The analysis allows for the interval to be small enough so that the size of the variance is Poissonian. The starting point for the investigation is the Kuznetsov formula and the body of the work consists of studying the complicated off-diagonal contributions which are responsible for the shape of the final asymptotics. A consequence of the main result is a slight improvement of the known lower bound for the remainder term in the Weyl counting function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defining Relations and the Algebraic Structure of the Group SL2 over Integral Hamilton Quaternions

In the present paper, we study the group SL 2 (H Z) of (2 2)-matrices with reduced norm 1 over the noncommutative ring of Hamilton quaternions with integral coeecients. In section 1, we obtain a presentation for SL 2 (H Z) in terms of generators and deening relations. In section 2, we exhibit a subgroup of nite index of SL 2 (H Z) with a nonabelian free quotient of rank 3. It is well known that...

متن کامل

Fundamental domains for SL 2 ( Z ) and Γ θ

1. H as homogeneous space for G = SL 2 (R) 2. Fundamental domain for Γ = SL 2 (Z) on H 3. Inversion and translation generate SL 2 (Z). 4. Re-enabling the action of SL 2 (R) 5. Fundamental domain for Γ θ and Γ(2) 6. Generators for Γ θ 7. Theta series are modular forms The real line R, being a group, is a homogeneous space in the sense that (of course) it acts transitively on itself. The upper ha...

متن کامل

Modular Forms on

Let k 2 Z and let SL 2 (Z) denote the special linear group SL 2 (Z) = a b c d : a; b; c; d 2 Z and ad bc = 1 : A modular form of weight k is an analytic function f de…ned on the complex upper half plane H = fz 2 C : Im(z) > 0g that transforms under the action of SL 2 (Z) according to the relation [1] f az + b cz + d = (cz + d) k f (z) for all a b c d 2 SL 2 (Z)

متن کامل

ar X iv : h ep - t h / 99 06 13 8 v 1 1 7 Ju n 19 99 Plateaux Transitions from S - matrices based on SL ( 2 , Z ) Invariant Field Theories

A scattering description is proposed for a boundary perturbation of a c = 1 SL(2, Z) invariant conformal field theory. The bulk massless S-matrices are of the form of Zamolodchikov’s staircase model. Using the boundary version of the thermodynamic Bethe ansatz, we show that the boundary free energy goes through a series of integer valued plateaux as a function of system size. Typeset using REVTEX

متن کامل

An Exposition of Results of Fricke

The purpose of this paper is to give an elementary and relatively self-contained proof of the following basic theorem, apparently due to Fricke [6, 7]. LetG = SL(2,C) and letG act onH = SL(2,C)×SL(2,C) by g · (ξ, η) 7−→ (gξg, gηg). Let κ(x, y, z) = x + y + z − xyz − 2. Theorem. Let f : H −→ C be a regular function which is invariant under the above G-action. Then there exists a polynomial funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004